Affiliation:
1. 1Department of Civil Engineering, Sharif University of Technology, P.O. Box 11155-9313, Tehran, Iran
Abstract
AbstractAlthough, the evaluation of the nanohardness of amorphous silicon (a-Si) has been the subject of a few experimental works but, to date, it has not been addressed theoretically yet. In this work, first principles Kohn-Sham density functional theory (DFT)-based molecular dynamics (MD) in combination with Mohr-Coulomb criterion is employed to calculate the ideal shear strength of the damped MD annealed a-Si sample containing dangling and floating bonds which are pertinent to the threefold- and fivefold-coordinated defects, respectively, as well as distorted tetrahedral bonds. The stress state beneath the nanoindenter is triaxial, and is accounted for properly. The calculated values of nanohardness are in reasonable agreement with those values measured experimentally. Consideration of the electronic charge distribution under the state of triaxial tension test reveals that the yield phenomenon in a-Si is accompanied by the transformation of a threefold-coordinated Si atom to a fourfold-coordinated.
Subject
Mechanics of Materials,Materials Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献