Electrochemical corrosion behaviour of HVOF sprayed iron-based amorphous metallic coatings on AISI 316 stainless steel in an NaCl solution

Author:

Vignesh S.1,Shanmugam K.2,Balasubramanian V.2,Sridhar K.3,Thirumalaikumarasamy D.4

Affiliation:

1. Centre for Materials Joining and Research (CEMAJOR), Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608002, Tamil Nadu, India, Tel.: 04144-239734, Fax: 04144-238275, Mobile: 9944466067

2. Centre for Materials Joining and Research (CEMAJOR), Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608002, Tamil Nadu, India

3. Protective Technologies Department, Naval Materials Research Laboratory (NMRL), Ambernath, Thane, Maharashtra, India

4. Department of Mechanical Engineering, Government College of Engineering, Krishnagiri, Bargur 635104, Tamil Nadu, India

Abstract

AbstractNew thermally sprayed amorphous metallic coatings have been developed recently that may provide a viable coating option for fluid handling equipment such as propellers, impellers and pumps. They possess the inherent risk of flow-dependent erosion-corrosion problems. In this investigation, iron based (Fe) amorphous coatings were deposited on AISI 316 stainless steel substrate by the high velocity oxy-fuel (HVOF) spraying process, and the coating microstructure was characterised using an optical microscope and scanning electron microscopy. The Fe-based amorphous coating consisted of an amorphous phase, an absence of dislocations, a nanocrystalline phase, less porosity and high hardness. The corrosion behaviour of the substrate and Fe-based amorphous coatings were evaluated by means of electrochemical tests in 3.5 wt.% NaCl solution. Three kinds of electrochemical tests were employed to identify the corrosion resistance of the coating and substrate. The results showed that the Fe30Cr25Mn5Mo20W10B5C3Si2 amorphous metallic coating had a superior corrosion resistance than 316 stainless steel. It was attributed to the amorphous structure and the presence of the corrosion resistant element chromium (Cr).

Publisher

Walter de Gruyter GmbH

Subject

Mechanics of Materials,Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3