Interacting functionally graded quantum wires/quantum dots with arbitrary shapes and general anisotropy within a distinct piezoelectric matrix

Author:

Shodja Hossein M.,Rashidinejad Ehsan1

Affiliation:

1. 1Department of Civil Engineering, Sharif University of Technology, 11155-9313 Tehran, Iran

Abstract

AbstractAn accurate determination of the two- and three-dimensional electro-elastic fields of periodically as well as arbitrarily distributed interacting quantum wires (QWRs) and interacting quantum dots (QDs) of arbitrary shapes within a piezoelectric matrix is of particular interest. Both the QWR/QD and the barrier may be made of materials with distinct general rectilinear anisotropy in elastic, piezoelectric, and dielectric constants. The lattice mismatch between the QWR/QD and the barrier is accounted by prescribing an initial misfit strain field within the QWR/QD. Previous analytical treatments have neglected the distinction between the electro-mechanical properties of the QWR/QD and those of the barrier. This simplifying assumption is circumvented in the present work by using a novel electro-mechanical equivalent inclusion method in Fourier space (FEMEIM). Moreover, the theory can readily treat cases where the QWRs/QDs are multiphase or functionally graded (FG). It was proven that for two-dimensional problems of either a periodic or an arbitrary distribution of FG QWRs in a transversely isotropic piezoelectric barrier, the elastic and electric fields are electrically and elastically impotent, respectively, and no electric field would be induced in the medium provided that the rotational symmetry and polarization axes coincide. Some numerical examples of more frequent shapes and different distributions of indium nitride QDs/QWRs within transversely isotropic aluminum nitride barrier are solved.

Publisher

Walter de Gruyter GmbH

Subject

Mechanics of Materials,Materials Science (miscellaneous)

Reference30 articles.

1. ev;Grundmann;PS Phys Rev Lett,1995

2. Physics of Their Heterostructures New York;Singh;Semiconductors,1993

3. Semiconductor quantum dots - towards a new generation of semiconductor devices

4. Annular inhomogeneities with eigenstrain and interphase modeling

5. DA;Faux;Phys Rev,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3