Spectral reconstruction using neural networks in filter-array-based chip-size spectrometers

Author:

Wissing Julio1ORCID,Fargueta Lidia1,Scheele Stephan1ORCID

Affiliation:

1. Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS , Erlangen , Germany

Abstract

Abstract Spectral reconstruction in filter-based miniature spectrometers remains challenging due to the ill-posed nature of identifying stable solutions. Even minor deviations in sensor data can cause misleading reconstruction outcomes, particularly in the absence of proper regularization techniques. While previous research has attempted to mitigate this instability by incorporating neural networks into the reconstruction pipeline to denoise the data before reconstruction or correct it after reconstruction, these approaches have not fully resolved the underlying issue. This work functions as a proof-of-concept for data-driven reconstruction that relies exclusively on neural networks, thereby circumventing the need to address the ill-posed inverse problem. We curate a dataset holding transmission spectra from various colored foils, commonly used in theatrical, and train five distinct neural networks optimized for spectral reconstruction. Subsequently, we benchmark these networks against each other and compare their reconstruction capabilities with a linear reconstruction model to show the applicability of cognitive sensors to the problem of spectral reconstruction. In our testing, we discovered that (i) spectral reconstruction can be achieved using neural networks with an end-to-end approach, and (ii) while a classic linear model can perform equal to neural networks under optimal conditions, the latter can be considered more robust against data deviations.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3