Investigations on terthiophene as an electrically conductive polymer for UV laser lithography

Author:

Ziemer Thorben1,Ziegmann Gerhard2,Rembe Christian3

Affiliation:

1. Clausthaler Zentrum für Materialtechnik, TU Clausthal , Leibnizstraße 9, 38678 Clausthal-Zellerfeld , Germany

2. Institut für Polymerwerkstoffe und Kunststofftechnik, TU Clausthal , Agricolastraße 6, 38678 Clausthal-Zellerfeld , Germany

3. Institut für Elektrische Informationstechnik, TU Clausthal , Leibnizstraße 28, 38678 Clausthal-Zellerfeld , Germany

Abstract

Abstract Polymers hold great potential for the use in microsensors and organic electronics. They are highly adaptable, easy to process and can contribute new or improved capabilities compared to semiconductors. Direct UV laser lithography also gains increasing attention. Because it avoids expensive photomasks, it is especially attractive where small numbers of specialized microcomponents are needed, like in prototyping. Lithography necessitates materials, which can be shaped by UV radiation. For many microsensor applications, there is the additional requirement of electric conductivity, preferably in the same material. We approached this demand by combining a Novolak and terthiophene doped with copper(II) perchlorate to form an interpenetrating polymer network, which possesses properties of both of its constituents. From this, we manufactured test structures with the UV laser of a micro pattern generator. In previous conference contributions, we showed a first proof of principle. In this publication, we present results of new experiments that demonstrate the characteristics in more detail. We improved our electrical setup to conduct four-terminal measuring. We used it to first verify previous results and investigated the material’s response to alternating currents up to 10 kHz. We then compared the electrical resistivity of differently sized structures for temperatures between 20 and 90 °C and examined long-term stability of their resistance by subjecting samples to temperatures of up to 60 °C for several hours. Additionally, we tested the influence of UV radiation on the resistance. Our samples exhibited good lithographic qualities. Resistivities were around 2 Ω mm and temperature sensitivity up to −407 Ω K−1. UV radiation induced a partially reversible increase of the electric resistance. The long-term stability of the material was temperature-dependent.

Funder

European Regional Development Fund

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3