Machine learning approach for impedance locus uncertainties

Author:

Bifano Luca1ORCID,Michel Markus1,Weidl Max1,Fischerauer Alice1,Fischerauer Gerhard1

Affiliation:

1. Chair of Measurement and Control Systems, Fakultät für Ingenieurwissenschaften , Universität Bayreuth , 95440 Bayreuth , Germany

Abstract

Abstract This work deals with the determination of the uncertainty of measurement data, determined by electrical impedance spectroscopy. Four different types of sand were measured impedimetrically in a measuring cell designed as a plate capacitor in a frequency range from 20 Hz to 1 MHz. The measuring cell was filled ten times with each sand and 20 impedance spectra were recorded for each filling. The uncertainty at each frequency was determined from the measurement data. It was found that the measurement data variance with a given measuring-cell filling was negligibly small. However, it increased by a factor of up to 100 when the measuring cell was repeatedly emptied and re-filled with the same material. We propose a way to estimate a continuous approximation of the uncertainty band of the impedance locus in the complex plane from the discrete uncertainties at each frequency. It uses a Support Vector Machine (SVM) to generate a regression curve using the discrete uncertainties. The result of the regression was used to estimate the uncertainties of an average impedance locus. The said machine learning tool can handle large amounts of data, classes, and influencing variables. In this manner, it can help to identify cause-effect relationships. Furthermore, at the end of this work a possibility to estimate a continuous uncertainty band along the impedance locus curve via SVM regression is shown. This is an extension to the common methodology in literature, where the uncertainty is only determined at selected individual points of the impedance spectrum.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3