Combination of generic novelty detection and supervised classification pipelines for industrial condition monitoring

Author:

Klein Steffen1,Wilhelm Yannick2,Schütze Andreas1ORCID,Schneider Tizian1

Affiliation:

1. Universität des Saarlandes , Lab for Measurement Technology , 66123 Saarbrucken , Germany

2. Graduate School of Excellence Advanced Manufacturing Engineering , University of Stuttgart , Nobelstr. 12, 70569 Stuttgart , Germany

Abstract

Abstract Machine learning in industrial condition monitoring is currently a rapidly developing field of research, to improve the efficiency and reliability of industrial processes. Many of the used algorithms are supervised methods, which can learn and recognize hidden patterns in the data. However, training data is required to learn these patterns, which can only be generated to a limited extent in an industrial environment due to the high costs involved. Furthermore, it is impossible to represent all possible events in the training data. In contrast, unsupervised or semi-supervised methods can be used to detect new conditions or events. However, these usually do not allow diagnosis or quantification of a fault condition, which is why their usefulness for modern maintenance strategies is limited. Consequently, a robust condition monitoring system should combine the functionality of both approaches. This paper presents a methodology for the combination of supervised classification and semi-supervised novelty detection to build an expandable and adaptable condition monitoring by transferring recurring novelties as new conditions to the supervised classification. A superordinate algorithm is proposed to achieve a stepwise extension of the supervised model based on new conditions detected by novelty detection. With this approach, a condition monitoring system can at first be based on “normal” data of a new machine or process by adding failures or novel conditions step-by-step. Furthermore, the supervised methods can be used to help the corresponding staff identify unknown conditions by analyzing the features selected by the supervised classification. The general workflow is demonstrated for condition monitoring of the pneumatic drive system of a welding gun.

Funder

European Regional Development Fund

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3