Generation of tailored subsurface zones in steels containing metastable austenite by adaptive machining and validation by eddy current testing

Author:

Fricke Lara Vivian1ORCID,Nguyen Hai Nam2,Breidenstein Bernd2,Denkena Berend2,Dittrich Marc-André2,Maier Hans Jürgen1,Zaremba David1

Affiliation:

1. Institut für Werkstoffkunde (Materials Science) , 566230 Leibniz Universität Hannover , Garbsen , Germany

2. Institut für Fertigungstechnik und Werkzeugmaschinen (Production Engineering and Machine Tools) , 566230 Leibniz Universität Hannover , Garbsen , Germany

Abstract

Abstract In order to withstand high mechanical and tribological loads, it is important that the components not only have a high core ductility but also a hard surface. Typically, a suitable microstructure is created by heat treatment processes before the workpiece is machined. However, these processes are time and energy consuming and can lead to component distortion. It would therefore be of great advantage if no additional heat treatment process would be required to produce a hardened subsurface zone. Since turning is often already integrated as a machining process in production lines, it would be advantageous to create a hardened subsurface within this process. As there is no possibility to measure the hardness directly during the turning process, a soft sensor was developed to determine the properties of the subsurface directly during the machining process. Steels with metastable austenite are of particular interest in this context, as metastable austenite can be converted into martensite by deformation. The amount of martensite produced in the subsurface can be adjusted provided that suitable turning parameters can be found. For this purpose, a process parallel material removal simulation was used to determine the actual conditions governing the process. It was found that there is a correlation between the martensite content and the amplitude of the 3rd harmonic of eddy current testing. Therefore, an eddy current sensor accompanying the process can be used as a basis for controlling the turning process for tailored martensite volume content adjustment.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3