Properties and special phenomena of strain sensors made of carbon particle-filled elastomers

Author:

Mersch Johannes12ORCID,Gerlach Gerald1ORCID

Affiliation:

1. Institute of Solid-State Electronics , Technische Universität Dresden , Dresden , Germany

2. Research Training Group “Interactive Fiber-Rubber-Composites”, Technische Universität Dresden , Dresden , Germany

Abstract

Abstract Elastomers with a percolative network of carbon particles are a frequently studied class of materials for applications requiring high elongation and compliant sensors. For novel applications such as soft robots or smart textiles, these have some advantages over traditional strain gauges. However, their functionality is not fully understood. In this work, such materials are investigated as strain sensors in terms of their dynamic behavior, and their current limitations are demonstrated. It becomes clear that such sensors exhibit a non-monotonic behavior under dynamic loads that differs significantly from that observed in quasi-static tests. Two strategies for improving sensor characteristics are derived, modeled, and experimentally tested using the results and an electro-mechanical network model. First, a melt-spinning process that orients the carbon nanotube particles in the process direction creates different degrees of anisotropy. Second, to generate a local negative transverse contraction, an additional auxetic support structure is used. While the resulting anisotropy is insufficient to improve sensor properties, the auxetic structure can significantly improve strain sensitivity.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3