Finding optimal decision boundaries for human intervention in one-class machine-learning models for industrial inspection

Author:

Zander Tim1,Pan Ziyan1,Birnstill Pascal2,Beyerer Jürgen12

Affiliation:

1. Institut für Anthropomatik und Robotik, Lehrstuhl für Interaktive Echtzeitsysteme , Karlsruher Institut für Technologie (KIT) , Karlsruhe , Germany

2. Fraunhofer-Institut für Optronik , Systemtechnik und Bildauswertung (IOSB) , Karlsruhe , Germany

Abstract

Abstract Anomaly detection with machine learning in industrial inspection systems for manufactured products relies on labelled data. This raises the question of how the labelling by humans should be conducted. Moreover, such a system will most likely always be imperfect and potentially need a human fall-back mechanism for ambiguous cases. We consider the case where we want to optimise the cost of the combined inspection process done by humans together with a pre-trained algorithm. This gives improved combined performance and increases the knowledge of the performance of the pre-trained model. We focus on so-called one-class classification problems which produce a continuous outlier score. After establishing some initial setup mechanisms ranging from using prior knowledge to calibrated models, we then define some cost model for machine inspection with a possible second inspection of the sample done by a human. Further, we discuss in this cost model how to select two optimal boundaries of the outlier score, where in between these two boundaries human inspection takes place. Finally, we frame this established knowledge into an applicable algorithm and conduct some experiments for the validity of the model.

Funder

Helmholtz Association

Bundesministerium für Bildung und Forschung

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3