Prediction of water absorption of recycled coarse aggregate based on deep learning image segmentation

Author:

Wei Yixing1,Fang Huaiying1,Yang Jianhong1,Tan Guoyi1,Huang Feizhi1ORCID

Affiliation:

1. College of Mechanical Engineering and Automation , 12422 Huaqiao University , Xiamen , China

Abstract

Abstract To quickly measure the water absorption (WA) of Recycled Coarse Aggregates (RCA), we utilize a detection platform designed for RCA to collect two-dimensional images. Utilizing the RCA-net network, we segment the areas of the mortar and aggregate on the RCA surface. Segmentations allow us to extract critical parameters for characterizing the quality of RCA, the proportion of mortar area (PMA). Subsequently, we construct three regression functions between PMA and WA. The experimental results demonstrate that our proposed segmentation method effectively separates both adhered particles of RCA and distinct areas of mortar and aggregate on RCA surfaces. Next, sprinkling water on RCA surfaces can enhance the accuracy of the segmentation. Notably, within particle size ranges of 5–10 mm, 10–20 mm, and 20–31.5 mm, we all observed a significant linear relationship between PMA and WA. We used those linear relationships and the equivalent mass of RCA detected by the image method in each particle size range to construct the prediction model of water absorption. According to the validation result of 24 groups RCA, this model’s maximum relative error of RCA water absorption predicted value was 10.6 %. The detection time of this method is short, and the detection time of 2 kg RCA is 3.8 min, with an average computation time per image of merely 0.659 s. This efficiency fulfills the requirements for real-time industrial inspection.

Funder

the Science and Technology Project of Quanzhou

the Major Program of Industry and University Cooperation of Fujian Province

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3