Influence of form deviations on the radius and roundness measurement of micro spheres

Author:

Oertel Erik1ORCID,Manske Eberhard1

Affiliation:

1. 26559 Technische Universität Ilmenau , Faculty of Mechanical Engineering, Institute of Process Measurement and Sensor Technology , PF 100565 , Ilmenau , Germany

Abstract

Abstract Micro and nano coordinate measuring machines (CMMs) require small and well characterized micro spheres as probing elements. However, established strategies and instruments have mostly been designed for and applied to the characterization of larger spheres in the range of millimetres or above. That is why we have recently focused our attention towards a novel strategy which is based on a set of atomic force microscope (AFM) surface scans in conjunction with a stitching algorithm. Initial experimental results are promising, but point to several influences which require further attention. We have, therefore, begun to model the measurement strategy and applied it on simulated spheres, in order to investigate and reduce some of these influences. The model is currently limited to effects which are related to the radius and form of the sphere. Other influences, like the AFM tip, are being ignored. In this paper, we introduce the essential parts of this model and apply it on spheres of different mean radii (60 µm, 100 µm and 150 µm) and of different qualities (Grade 3 and Grade 5). The investigations illustrate that the measurement object can have a significant influence on the measurement result and needs to be considered.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3