Local performance evaluation of AI-algorithms with the generalized spatial recall index

Author:

Müller Patrick1,Braun Alexander2ORCID

Affiliation:

1. Hochschule Düsseldorf, Fachbereich Elektro- und Informationstechnik , Düsseldorf , Deutschland

2. Electrical Engineering and Information Technology , University of Applied Sciences Dusseldorf , Münsterstraße 156, 40476 , Düsseldorf , NRW , Germany

Abstract

Abstract We have developed a novel metric to gauge the performance of artificial intelligence (AI) or machine learning (ML) algorithms, called the Spatial Recall Index (SRI). The novelty is the spatial resolution of a standard performance indicator, as a Recall value is assigned to each individual pixel. This generates a distribution of the performance of a given AI-algorithm with the resolution of the images in the dataset. While the mathematical basis has already been presented before, here we demonstrate the usage on more datasets and delve into in-depth application examples. We examine both the MS COCO and the Berkeley Deep Drive datasets, using a state-of-the-art object detection algorithm. The dataset is degraded using a physical-realistic lens-model, where the optical performance varies over the field of view, as a real camera would. This study highlights the usefulness of the SRI, as every image has been taken by realistic optics. A generalization, the GSRI is introduced, from which we derive SRIA, weighting with object area and SRIrisk intended for autonomous driving. Finally, these metrics are compared.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3