Affiliation:
1. Chair of Electrical Energy Conversion Systems and Drives , 38869 Chemnitz University of Technology , Chemnitz , Germany
Abstract
Abstract
In this study, the derivation of the common formulas for calculating the field quantities of magnetic field strength and magnetic flux density from the physically measurable quantities current and induced voltage is shown in detail for toroidal shaped specimen. The simplifications of the inhomogeneous fields are described, which are based on equivalent geometric parameters and allow the use of the electrical measured quantities. While in the standards and literature no clear definitions of the equivalent geometric parameters are given, suggestions for these definitions are made. A review and comparison of various calculation rules from different standards for the equivalent geometric parameters is done. These calculation methods are further generalized in normalized form as a function of the diameter ratio of the toroidal specimen. Finally, the differences between the field quantities using the different methods of calculating the equivalent geometric parameters are analyzed.
Reference14 articles.
1. DIN Deutsches Institut für Normung eV, DIN EN 60404-2:2009-01 Magnetische Werkstoffe – Teil 2: Verfahren zur Bestimmung der magnetischen Eigenschaften von Elektroband und -blech mit Hilfe eines Epsteinrahmens, Berlin, Beuth Verlag, 2009.
2. DIN Deutsches Institut für Normung e.V, DIN EN IEC 60404-6 (VDE 0354-6): 2022-05 Magnetische Werkstoffe – Teil 6 : Verfahren zur Messung der magnetischen Eigenschaften weichmagnetischer metallischer und pulverförmiger Werkstoffe bei Frequenzen im Bereich 20 Hz bis 100 kHz mittels Ringproben, Berlin, Beuth Verlag, 2022.
3. H. Pfützner, G. Shilyashki, and E. Huber, “Physical assessment of the magnetic path length of Energy loss testers,” IEEE Trans. Magn., vol. 56, no. 12, pp. 1–7, 2020. https://doi.org/10.1109/tmag.2020.3025041.
4. D. X. Chen and Y. H. Zhu, “Effective magnetic path length in Epstein frame test of electrical steels,” Rev. Sci. Instrum., vol. 93, no. 5, p. 055105, 2022. https://doi.org/10.1063/5.0084859.
5. K. Qingyi, et al.., “Determination of the weighted mean path length of the Epstein frame,” COMPEL – Int. J. Comput. Math. Electr. Electron. Eng., vol. 33, nos. 1–2, pp. 224–233, 2014. https://doi.org/10.1108/COMPEL-11-2012-0336.