Author:
Konnerth Johannes,Eiser Martina,Jäger Andreas,Bader Thomas Karl,Hofstetter Karin,Follrich Jürgen,Ters Thomas,Hansmann Christian,Wimmer Rupert
Abstract
AbstractRed oak wood (Quercus rubraL.) samples were submitted to an enzymatic treatment with a commercial mixture of hemicellulases aiming at the selective depolymerization and removal of the hemicelluloses. Mechanical properties of treated samples were characterized and compared with untreated samples at two hierarchical levels. At the macrolevel, tensile properties revealed to be less sensitive to degradation of the cell wall matrix compared to compression and hardness properties. Results obtained through indentation at the microlevel indicated that hardness and the so-called reduced modulus of treated wood were significantly lowered. Accordingly, hardness and reduced elastic modulus have proven to be most sensitive to modification of the cell wall matrix by reducing the content of hemicelluloses. It is proposed that transversal and shear stresses, which are mainly carried by the cell wall matrix, are additional parameters having strong effects on elastic modulus obtained by nanoindentation. Micromechanical modeling was employed to confirm the observed changes. There is consistency between the measured and the modeled properties, obtained at both the microlevel and the macrolevel of wood.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献