Electron spectroscopy on plasma treated lignin and cellulose

Author:

Klarhöfer Lothar,Viöl Wolfgang,Maus-Friedrichs Wolfgang

Abstract

Abstract Cellobiose and lignin were plasma treated in synthetic air and argon using a dielectric barrier discharge at atmospheric pressure. Changes due to the plasma modification of the surfaces were studied by the techniques of X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy, and metastable impact electron spectroscopy. The combination of these techniques makes it possible to distinguish between hydroxyl and carbonyl groups at the surface, on the one hand, and conjugated and non-conjugated carbon bonds, on the other hand. This type of differentiation would not be easily possible based on XPS alone, even at very high resolution. The plasma treatment in oxygen containing atmospheres oxidizes the lignin surface by the generation of hydroxyl, carbonyl, and carboxyl groups and reduces cellulose surfaces by the degradation of hydroxyl groups and the formation of double bonds between carbon and oxygen. The plasma treatment in argon leads to the reduction of both lignin and cellulose by the formation of double bonds under degradation of hydroxyl groups.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3