Analysis of genetic determination of partial resistance to white rot in sunflower

Author:

Delgado Santiago Germán12,Castaño Fernando12,Cendoya Maria Gabriela12,Salaberry Maria Teresa12,Quiróz Facundo32

Affiliation:

1. Facultad de Ciencias Agrarias-UNMdP , Balcarce , Argentina

2. Unidad Integrada Balcarce , P.O. Box 276 , 7620 , Balcarce , Argentina

3. Estación Experimental Agropecuaria-INTA , Balcarce , Argentina

Abstract

Abstract Sunflower is usually affected by white rot (WR), a disease produced by Sclerotinia sclerotiorum. Thus, breeders select WR resistant hybrids by means of field experiments replicated in different environments. The WR selection will be effective when the correlation between the phenotype and the set of genes controlling the trait is high. This study aimed to estimate the relationship between the genotype and phenotype for components of WR partial resistance in hybrids. Also, the genotypic merit of these hybrids is estimated to determine their value in breeding programs. To this end, 37 cultivars were used during three years in Balcarce (southeast of Buenos Aires Province, AR). Plants were inoculated with S. sclerotiorum in their capitula. The WR variables evaluated were the relative incubation period (RIP), the daily lesion growth (DLG) and the relative DLG. By using transformed data, the degree of genetic determination (DGD) reached values of 0.78 (RIP), 0.63 (relative DLG) and 0.35 (DLG). Although all error variances and their relative contributions to the total variance had the highest values, the DGD values for RIP and relative DLG were higher than those reported in the bibliography. The best linear unbiased predictors (BLUPs) detected six hybrids with most suitable genetic merit for RIP and relative DLG. The BLUP correlation coefficient suggested that resistance genes involved in RIP and relative DLG were not the same. Thus, these genes could be used simultaneously to develop new sunflower hybrids with more complex WR resistance.

Funder

Universidad Nacional de Mar del Plata

Publisher

Walter de Gruyter GmbH

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3