Assessment of Mating System in Helianthus annuus and H. petiolaris (Asteraceae) Populations

Author:

Gutierrez Agustina1,Scaccia Baffigi Daiana2,Poverene Monica32

Affiliation:

1. Centro de Recursos Naturales Renovables de la Zona Semiarida (CERZOS) CONICET-UNS , CP 8000 Bahía Blanca , Argentina

2. Department of Agronomy , Universidad Nacional del Sur , CP 8000 Bahía Blanca , Argentina

3. Centro de Recursos Naturales Renovables de la Zona Semiarida (CERZOS) CONICET-UNS , Bahía Blanca , Argentina

Abstract

Abstract Helianthus annuus subsp. annuus and H. petiolaris are wild North American species that have been naturalized in central Argentina. They have a sporophytic self-incompatibility genetic system that prevent self-fertilization but the occurrence of self-compatible plants in Argentina was observed in both species and could in part explain their highly invasive ability. Their geographical distribution coincides with the major crop area. The domestic sunflower is self-compatible, can hybridize with both species and presents a considerable amount of gene flow. The aim of this study is to understand the self-incompatibility mechanism in both wild Helianthus species. Reciprocal crossing and seed production were used to identify self-compatible genotypes, the number and distribution of self-incompatibility alleles within populations and the type and extent of allelic interactions in the pollen and pistil. The behaviour of S alleles within each population was explained by five functional S alleles and one non-functional allele in each species, differing in their presence and frequency within accessions. In both species, the allelic interactions were of dominance/recessiveness and codominance in pollen, whereas it was only codominance in the pistil. Inbreeding effects in wild materials appeared in the third generation of self-pollination, with lethal effects in most plants. The number of S alleles is low and they behave in a similar way of other Asteraceae species. The self-compatibility was addressed to non-functional S alleles introgressed in wild Helianthus plants through gene flow from self-compatible sunflower.

Publisher

Walter de Gruyter GmbH

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3