Tillage intensity by organic fertilization interaction on sunflower performance and some soil properties

Author:

Janmohammadi Mohsen1,Sabaghnia Naser1

Affiliation:

1. Department of Plant Production and Genetics, Faculty of Agriculture , University of Maragheh , Maragheh , Iran

Abstract

Abstract A field trail was performed to study the impacts of soil tillage system and some organic and inorganic fertilizers treatments on sunflower performance and soil characteristics in the semi-arid region across 2015–2016 growing season. The tillage systems were (T1) conventional tillage, and (T2) reduced tillage while the fertilizer treatments were (F1) control, (F2) 20 t ha−1 farmyard manure, (F3) 40 t ha−1 farmyard manure, (F4) 20 t ha−1 farmyard manure plus 50:25:25 kg ha−1 NPK, (F5) 100:50:50 kg ha−1 NPK. The two-way entry (treatment) by tester (trait) biplot tool, described 84 % of the observed variability (68 % and 16 % by the first two principal components, respectively). The which-wins-where pattern, showed six vertex treatment (tillage system × fertilizer type) as: T1-F1 which had the highest values for bulk density; T1-F3 which had the highest values for days to maturity, organic matter and root depth; T1-F5 which had the highest values for soil phosphorus and harvest index; T2-F1 which had the highest values for mean emergence time; T2-F3 which had the highest values for soil potassium and achene yield; and T2-F4 which had the highest values for soil nitrogen. The ideal treatment pattern indicated that T2-F4 was the best treatment combination. We found that the best performance for sunflower achene yield was obtained with using reduced tillage system plus F3 or F4 fertilizer treatments. Finally, application no fertilizer or using only chemical fertilizers could not improve sunflower performance in both tillage systems.

Publisher

Walter de Gruyter GmbH

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3