Long non-coding RNA HCP5 serves as a ceRNA sponging miR-17-5p and miR-27a/b to regulate the pathogenesis of childhood obesity via the MAPK signaling pathway

Author:

Chen Rui,Xin Guangda,Zhang Xiaofei

Abstract

Abstract Background This study aimed to investigate the completing endogenous RNA (ceRNA) network involved in childhood obesity. Methods The microarray dataset GSE9624 was downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed long non-coding RNAs (lncRNAs) (DELs) and messenger RNAs (DEMs) were isolated between the childhood obesity and non-obesity tissue samples. Then, Gene Ontology (GO) functional and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of isolated DEMs were performed. DELs and DEMs targeted miRNAs were predicted to construct a ceRNA regulatory network. Finally, critical lncRNAs were validated in another dataset. Results A total of 1257 differentially expressed RNAs were screened, including 28 lncRNAs and 1229 mRNAs. In addition, these RNAs were mainly involved in defense response, cell cycle, mitogen-activated protein kinase (MAPK) signaling pathway, apoptosis, etc. Three lncRNAs (human leukocyte antigen complex 5 [HCP5], long intergenic non-protein coding RNA 839 [LINC00839] and receptor activity modifying protein 2 [RAMP2-AS1]) and two related miRNAs (hsa-miR-17-5p and hsa-miR-27a/b-3p) were identified as key RNAs in childhood obesity. Specifically, lncRNA HCP5 interacted with miR-17-5p and miR-27a/b to regulate nemo-like kinase (NLK) and Ras-related protein 2 (RRAS2) via the MAPK signaling pathway. Finally, four genes (RRAS2, NLK, bcl2/adenovirus E1B protein-interacting protein 3 [BNIP3] and phorbol-12-myristate-13-acetate-induced protein 1 [PMAIP1]) targeted by miRNAs were predicted as critical genes and might be novel diagnostic biomarkers of childhood obesity. Conclusions lncRNA HCP5 could serve as a ceRNA sponging miR-17-5p and miR-27a/b to regulate the pathogenesis of childhood obesity via NLK and RRAS2 in the MAPK signaling pathway.

Publisher

Walter de Gruyter GmbH

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism,Pediatrics, Perinatology, and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3