In defense of decentralized research data management
Author:
Hanke Michael12ORCID, Pestilli Franco3ORCID, Wagner Adina S.1ORCID, Markiewicz Christopher J.4ORCID, Poline Jean-Baptiste5ORCID, Halchenko Yaroslav O.6ORCID
Affiliation:
1. Institute of Neuroscience and Medicine Brain & Behavior (INM-7), Research Center Jülich , Wilhelm-Johnen-Straße , 52425 Jülich , Germany 2. Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University , 40225 Düsseldorf , Germany 3. Department of Psychology , The University of Texas at Austin , 108 E Dean Keeton St , Austin , TX 78712 , TX , USA 4. Department of Psychology , Stanford University , 450 Jane Stanford Way, Building 420 , Stanford , CA 94305 , CA , USA 5. McConnell Brain Imaging Centre, Faculty of Medicine, McGill University , 3801 University Street , Montreal , Quebec , H3A 2B4 , Canada 6. Department of Psychological and Brain Sciences , Dartmouth College , 419 Moore Hall, Hinman Box 6207 , Hanover , NH 03755 , NH , USA
Abstract
Abstract
Decentralized research data management (dRDM) systems handle digital research objects across participating nodes without critically relying on central services. We present four perspectives in defense of dRDM, illustrating that, in contrast to centralized or federated research data management solutions, a dRDM system based on heterogeneous but interoperable components can offer a sustainable, resilient, inclusive, and adaptive infrastructure for scientific stakeholders: An individual scientist or laboratory, a research institute, a domain data archive or cloud computing platform, and a collaborative multisite consortium. All perspectives share the use of a common, self-contained, portable data structure as an abstraction from current technology and service choices. In conjunction, the four perspectives review how varying requirements of independent scientific stakeholders can be addressed by a scalable, uniform dRDM solution and present a working system as an exemplary implementation.
Funder
Microsoft Horizon 2020 Framework Programme National Institute of Mental Health Health Canada National Science Foundation Canada First Research Excellence Fund Bundesministerium für Bildung und Forschung National Institute of Biomedical Imaging and Bioengineering
Publisher
Walter de Gruyter GmbH
Subject
Clinical Neurology,Neurology
Reference14 articles.
1. Avesani, P., McPherson, B., Hayashi, S., Caiafa, C.F., Henschel, R., Garyfallidis, E., Kitchell, L., Bullock, D., Patterson, A., Olivetti, E., et al.. (2019). The open diffusion data derivatives, brain data upcycling via integrated publishing of derivatives and reproducible open cloud services. Sci. Data6, 1–13, https://doi.org/10.1038/s41597-019-0073-y. 2. Gorgolewski, K.J., Auer, T., Calhoun, V.D., Craddock, R.C., Das, S., Duff, E.P., Flandin, G., Ghosh, S.S., Glatard, T., Halchenko, Y.O., et al.. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci. Data, 3, 1–9, https://doi.org/10.1038/sdata.2016.44. 3. Gorgolewski, K., Esteban, O., Schaefer, G., Wandell, B., and Poldrack, R. (2017). OpenNeuro—A free online platform for sharing and analysis of neuroimaging data. Organ. Hum. Brain Mapp. Vancouver, Canada 1677. 4. Guthrie, S., Lichten, C., Harte, E., Parks, S., Wooding, S. 2017. International Mobility of Researchers (Cambridge, UK: RAND EUROPE). 5. Hanke, M., Halchenko, Y.O., Poldrack, B., Meyer, K., Solanky, D.S., Alteva, G., Gors, J., MacFarlane, D., Häusler, C.O., Olson, T., et al.. (2020). DataLad/DataLad: 0.13.5 (October 30, 2020, Version 0.13.5). Zenodo, https://doi.org/10.5281/zenodo.4161813.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|