M, B and Co1 are recognisable by their prime graphs

Author:

Lee Melissa1,Popiel Tomasz1

Affiliation:

1. Department of Mathematics , University of Auckland , Auckland , New Zealand

Abstract

Abstract The prime graph, or Gruenberg–Kegel graph, of a finite group 𝐺 is the graph Γ ( G ) \Gamma(G) whose vertices are the prime divisors of | G | \lvert G\rvert and whose edges are the pairs { p , q } \{p,q\} for which 𝐺 contains an element of order p q pq . A finite group 𝐺 is recognisable by its prime graph if every finite group 𝐻 with Γ ( H ) = Γ ( G ) \Gamma(H)=\Gamma(G) is isomorphic to 𝐺. By a result of Cameron and Maslova, every such group must be almost simple, so one natural case to investigate is that in which 𝐺 is one of the 26 sporadic simple groups. Existing work of various authors answers the question of recognisability by prime graph for all but three of these groups, namely the Monster, M \mathrm{M} , the Baby Monster, B \mathrm{B} , and the first Conway group, Co 1 \mathrm{Co}_{1} . We prove that these three groups are recognisable by their prime graphs.

Publisher

Walter de Gruyter GmbH

Subject

Algebra and Number Theory

Reference14 articles.

1. W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997), 235–265.

2. T. Breuer, CTblLib—a GAP package, Version 1.3.2, 2021, http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/.

3. P. J. Cameron and N. V. Maslova, Criterion of unrecognizability of a finite group by its Gruenberg–Kegel graph, preprint (2021), https://arxiv.org/abs/2012.01482v2.

4. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford University, Oxford, 1985.

5. D. Gorenstein, Finite Groups, 2nd ed., Chelsea, New York, 1980.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3