Affiliation:
1. Remote Sensing Department , Applied Physics Division , Soreq Nuclear Research Center , Yavne 8180000 , Israel
2. Einstein Institute of Mathematics , The Hebrew University of Jerusalem , Jerusalem , 91904 , Israel
Abstract
Abstract
The congruence subgroup problem for a finitely generated group Γ and for
G
≤
Aut
(
Γ
)
G\leq\mathrm{Aut}(\Gamma)
asks whether the map
G
^
→
Aut
(
Γ
^
)
\hat{G}\to\mathrm{Aut}(\hat{\Gamma})
is injective, or more generally, what its kernel
C
(
G
,
Γ
)
C(G,\Gamma)
is.
Here
X
^
\hat{X}
denotes the profinite completion of 𝑋.
In the case
G
=
Aut
(
Γ
)
G=\mathrm{Aut}(\Gamma)
, we write
C
(
Γ
)
=
C
(
Aut
(
Γ
)
,
Γ
)
C(\Gamma)=C(\mathrm{Aut}(\Gamma),\Gamma)
.
Let Γ be a finitely generated group,
Γ
¯
=
Γ
/
[
Γ
,
Γ
]
\bar{\Gamma}=\Gamma/[\Gamma,\Gamma]
, and
Γ
*
=
Γ
¯
/
tor
(
Γ
¯
)
≅
Z
(
d
)
\Gamma^{*}=\bar{\Gamma}/\mathrm{tor}(\bar{\Gamma})\cong\mathbb{Z}^{(d)}
.
Define
Aut
*
(
Γ
)
=
Im
(
Aut
(
Γ
)
→
Aut
(
Γ
*
)
)
≤
GL
d
(
Z
)
.
\mathrm{Aut}^{*}(\Gamma)=\operatorname{Im}(\mathrm{Aut}(\Gamma)\to\mathrm{Aut}(\Gamma^{*}))\leq\mathrm{GL}_{d}(\mathbb{Z}).
In this paper we show that, when Γ is nilpotent, there is a canonical isomorphism
C
(
Γ
)
≃
C
(
Aut
*
(
Γ
)
,
Γ
*
)
.
C(\Gamma)\simeq C(\mathrm{Aut}^{*}(\Gamma),\Gamma^{*}).
In other words,
C
(
Γ
)
C(\Gamma)
is completely determined by the solution to the classical congruence subgroup problem for the arithmetic group
Aut
*
(
Γ
)
\mathrm{Aut}^{*}(\Gamma)
.
In particular, in the case where
Γ
=
Ψ
n
,
c
\Gamma=\Psi_{n,c}
is a finitely generated free nilpotent group of class 𝑐 on 𝑛 elements, we get that
C
(
Ψ
n
,
c
)
=
C
(
Z
(
n
)
)
=
{
e
}
C(\Psi_{n,c})=C(\mathbb{Z}^{(n)})=\{e\}
whenever
n
≥
3
n\geq 3
, and
C
(
Ψ
2
,
c
)
=
C
(
Z
(
2
)
)
=
F
^
ω
C(\Psi_{2,c})=C(\mathbb{Z}^{(2)})=\hat{F}_{\omega}
is the free profinite group on countable number of generators.
Subject
Algebra and Number Theory