Subnormality and residuals for saturated formations: A generalization of Schenkman’s theorem

Author:

Aivazidis Stefanos1,Safonova Inna N.2,Skiba Alexander N.3

Affiliation:

1. Department of Mathematics and Applied Mathematics , University of Crete , Voutes Campus, 70013 Heraklion , Greece

2. Department of Applied Mathematics and Computer Science , Belarusian State University , Minsk 220030 , Belarus

3. Department of Mathematics and Technologies of Programming , Francisk Skorina Gomel State University , Gomel 246019 , Belarus

Abstract

Abstract Let G be a finite group, and let 𝔉 {\mathfrak{F}} be a hereditary saturated formation. We denote by 𝐙 𝔉 ( G ) {\mathbf{Z}_{\mathfrak{F}}(G)} the product of all normal subgroups N of G such that every chief factor H / K {H/K} of G below N is 𝔉 {\mathfrak{F}} -central in G, that is, ( H / K ) ( G / 𝐂 G ( H / K ) ) 𝔉 {(H/K)\rtimes(G/\mathbf{C}_{G}(H/K))\in\mathfrak{F}} . A subgroup A G {A\leqslant G} is said to be 𝔉 {\mathfrak{F}} -subnormal in the sense of Kegel, or K- 𝔉 {\mathfrak{F}} -subnormal in G, if there is a subgroup chain A = A 0 A 1 A n = G {A=A_{0}\leqslant A_{1}\leqslant\cdots\leqslant A_{n}=G} such that either A i - 1 A i {A_{i-1}\trianglelefteq A_{i}} or A i / ( A i - 1 ) A i 𝔉 {A_{i}/(A_{i-1})_{A_{i}}\in\mathfrak{F}} for all i = 1 , , n {i=1,\ldots,n} . In this paper, we prove the following generalization of Schenkman’s theorem on the centraliser of the nilpotent residual of a subnormal subgroup: Let F {\mathfrak{F}} be a hereditary saturated formation containing all nilpotent groups, and let S be a K- F {\mathfrak{F}} -subnormal subgroup of G. If Z F ( E ) = 1 {\mathbf{Z}_{\mathfrak{F}}(E)=1} for every subgroup E of G such that S E {S\leqslant E} , then C G ( D ) D {\mathbf{C}_{G}(D)\leqslant D} , where D = S F {D=S^{\mathfrak{F}}} is the F {\mathfrak{F}} -residual of S.

Publisher

Walter de Gruyter GmbH

Subject

Algebra and Number Theory

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3