Automatic continuity for groups whose torsion subgroups are small

Author:

Keppeler Daniel1,Möller Philip1,Varghese Olga2

Affiliation:

1. Department of Mathematics , University of Münster , Einsteinstraße 62, 48149 Münster , Germany

2. Department of Mathematics , Otto-von-Guericke University of Magdeburg , Universitätsplatz 2, 39106 Magdeburg , Germany

Abstract

Abstract We prove that a group homomorphism φ : L G \varphi\colon L\to G from a locally compact Hausdorff group 𝐿 into a discrete group 𝐺 either is continuous, or there exists a normal open subgroup N L N\subseteq L such that φ ( N ) \varphi(N) is a torsion group provided that 𝐺 does not include ℚ or the 𝑝-adic integers Z p \mathbb{Z}_{p} or the Prüfer 𝑝-group Z ( p ) \mathbb{Z}(p^{\infty}) for any prime 𝑝 as a subgroup, and if the torsion subgroups of 𝐺 are small in the sense that any torsion subgroup of 𝐺 is artinian. In particular, if 𝜑 is surjective and 𝐺 additionally does not have non-trivial normal torsion subgroups, then 𝜑 is continuous. As an application, we obtain results concerning the continuity of group homomorphisms from locally compact Hausdorff groups to many groups from geometric group theory, in particular to automorphism groups of right-angled Artin groups and to Helly groups.

Publisher

Walter de Gruyter GmbH

Subject

Algebra and Number Theory

Reference48 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On normal subgroups in automorphism groups;Journal of Group Theory;2024-06-29

2. On parabolic subgroups of Artin groups;Israel Journal of Mathematics;2023-12-18

3. Narrow normal subgroups of Coxeter groups and of automorphism groups of Coxeter groups;Journal of Group Theory;2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3