Groups that have a partition by commuting subsets

Author:

Foguel Tuval1,Hiller Josh2,Lewis Mark L.3,Moghaddamfar Alireza4

Affiliation:

1. Department of Mathematics and Computer Science , Adelphi University , Garden City, NY 11010 , USA

2. Department of Mathematics and Computer Science , Adelphi University , Garden City , NY 11010 , USA

3. Department of Mathematical Sciences , Kent State University , Kent , Ohio 44242 , USA

4. Faculty of Mathematics , K. N. Toosi University of Technology , P.O. Box 16765–3381 , Tehran , Iran

Abstract

Abstract Let 𝐺 be a nonabelian group. We say that 𝐺 has an abelian partition if there exists a partition of 𝐺 into commuting subsets A 1 , A 2 , , A n A_{1},A_{2},\ldots,A_{n} of 𝐺 such that | A i | 2 \lvert A_{i}\rvert\geqslant 2 for each i = 1 , 2 , , n i=1,2,\ldots,n . This paper investigates problems relating to groups with abelian partitions. Among other results, we show that every finite group is isomorphic to a subgroup of a group with an abelian partition and also isomorphic to a subgroup of a group with no abelian partition. We also find bounds for the minimum number of partitions for several families of groups which admit abelian partitions – with exact calculations in some cases. Finally, we examine how the size of a partition with the minimum number of parts behaves with respect to the direct product.

Publisher

Walter de Gruyter GmbH

Subject

Algebra and Number Theory

Reference26 articles.

1. M. Akbari and A. R. Moghaddamfar, Groups for which the noncommuting graph is a split graph, Int. J. Group Theory 6 (2017), no. 1, 29–35.

2. R. Baer, Partitionen endlicher Gruppen, Math. Z. 75 (1960/61), 333–372.

3. R. Baer, Einfache Partitionen endlicher Gruppen mit nicht-trivialer Fittingscher Untergruppe, Arch. Math. (Basel) 12 (1961), 81–89.

4. R. Baer, Einfache Partitionen nichteinfacher Gruppen, Math. Z. 77 (1961), 1–37.

5. S. R. Blackburn, J. R. Britnell and M. Wildon, The probability that a pair of elements of a finite group are conjugate, J. Lond. Math. Soc. (2) 86 (2012), no. 3, 755–778.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3