Affiliation:
1. School of Mathematics , Monash University , Clayton , VIC 3800 , Australia
Abstract
Abstract
M. C. Slattery [Generation of groups of square-free order, J. Symbolic Comput. 42 2007, 6, 668–677] described computational methods to enumerate, construct and identify finite groups of squarefree order.
We generalise Slattery’s result to the class of finite groups that have cyclic Sylow subgroups and provide an implementation for the computer algebra system GAP.
Funder
Australian Research Council
Subject
Algebra and Number Theory
Reference14 articles.
1. H. U. Besche, B. Eick and E. A. O’Brien,
A millennium project: Constructing small groups,
Internat. J. Algebra Comput. 12 (2002), no. 5, 623–644.
2. W. Bosma, J. Cannon and C. Playoust,
The Magma algebra system. I. The user language,
J. Symbolic Comput. 24 (1997), 235–265.
3. H. Dietrich and D. Low,
GAP code to work with C-groups, https://github.com/heikodietrich/cgroups.
4. H. Dietrich and J. B. Wilson,
Isomorphism testing of black-box groups of most orders in quasi-polynomial time,
submitted.
5. O. Hölder,
Die Gruppen mit quadratfreier Ordnungszahl,
Nachr. König. Ges. Wiss. Göttingen Math. Phys. Kl. (1895), 211–229.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Group isomorphism is nearly-linear time for most orders;2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS);2022-02
2. Groups whose orders factorise into at most four primes;Journal of Symbolic Computation;2022-01