Affiliation:
1. Mathematics Department New Mexico State University Las Cruces, NM 88003 USA
Abstract
Abstract
If {xj
} is a sequence in a normed space X, the space of bounded multipliers for the series
∑
j
x
j
$\sum\limits_j {{x_j}} $
is defined to be
M
∞
(
∑
x
j
)
=
{
{
t
j
}
∈
l
∞
:
∑
j
=
1
∞
t
j
x
j
converges
}
${M^\infty }\big({\sum {x_j}}\big) = \Big\{ {\{ {t_j}\} \in {l^\infty }:\;\sum\limits_{j = 1}^\infty {{t_j}} {x_j}\; \text{converges}} \Big\}$
and the summing operator
S
:
M
∞
∑
x
j
→
X
$S:{M^\infty }\left( {{\mkern 1mu} \sum {{x_j}} } \right) \to X$
is defined to be
S
(
{
t
j
}
)
=
∑
j
=
1
∞
t
j
x
j
$S(\{ {t_j}\} ) = \sum\limits_{j = 1}^\infty {{t_j}} {x_j}$
. We show that if X is complete, the series
∑
j
x
j
$\sum\limits_j {{x_j}} $
is subseries convergent iff the operator S is compact and the series is absolutely convergent iff the operator is absolutely summing. Other related results are established.
Reference14 articles.
1. Aizpuru, A.—Pérez-Fernandez, J.: Characterizations of series in Banach spaces, Acta Math. Univ. Comenian. 2 (1999), 337–344.
2. Aizpuru, A.—Pérez-Fernandez, J.: Spaces of S-bounded multiplier convergent series, Acta Math. Hungar. 87 (2000), 135–146.
3. Diestel, J.—Jarchow, J.—Tonge, A.: Absolutely Summing Operators, Cambridge University Press, Cambridge, 1995.
4. Dunford, N.—Schwartz, J.: Linear Operators I, Interscience, New York, 1958.
5. Edwards, D. A.: On the continuity properties of functions satisfying a condition of Sirvant, Quart. J. Math. Oxford (2) 8 (1957), 58–67.