Affiliation:
1. Faculty of Economics and Business, University of Maribor, Razlagova 14, SI-2000 Maribor, SLOVENIA
Abstract
Abstract
Let ϕ be an injective, continuous, Lie product preserving map on Mn
(ℝ), n > 3. In the paper we show that then there exist an invertible matrix T ∈ Mn
(ℝ) and a continuous function ψ:Mn
(ℝ)→ ℝ, where ψ(A) = 0 for all matrices of trace zero, such that either ϕ(A) = TAT
−1 + ψ(A)I for all A ∈ Mn
(ℝ), or ϕ(A) = −TAtT−1 + ψ(A)I for all A ∈ Mn
(ℝ). We determine that a similar proposition holds true for the set Mn
(ℂ), n > 3.
Reference13 articles.
1. Albert, A. A.—Muckenhoupt, B.: On matrices of trace zero, Michigan Math. J. 3 (1957), 1–3.
2. Choi, M. D.—Jafarian, A. A.—Radjavi, H.: Linear maps preserving commutativity, Linear Algebra Appl. 87 (1987), 227–241.
3. Conway, J. B.: A Course in Functional Analysis, Springer-Verlag, New York, 1990.
4. Dolinar, G.: Maps on upper triangular matrices preserving Lie products, Linear Multilinear Algebra 55 (2007), 191–198.
5. Dolinar, G.: Maps on Mn preserving Lie products, Publ. Math. Debrecen 71 (2007), 467–477.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献