Modulation of Anticancer Drug-Induced P-Glycoprotein Expression by Naringin

Author:

Ali Mamdouh M.1,Agha Fatma G.2,El-Sammad Nermin M.1,Hassan Sherien K.1

Affiliation:

1. Biochemistry Department, Division of Genetic Engineering and Biotechnology, National Research Centre, Cairo, Egypt

2. Department of Forensic Medicine and Toxicology, Faculty of Medicine for Girls, El-Azhar University, Cairo, Egypt

Abstract

Multidrug resistance (MDR) is a phenomenon that is often associated with decreased intracellular drug accumulation in the tumour cells of a patient, resulting from enhanced drug efflux. It is often related to the overexpression of P-glycoprotein (P-gp) on the surface of tumour cells, thereby reducing drug cytotoxicity. In the present study, naringin (the predominant flavonone found in grapefruit and other related citrus species) was tested for its potential ability to modulate the expression of P-gp in a short-term animal bioassay, in comparison with verapamil (a calcium channel blocker and positive MDR reversal agent). Western blot analysis showed that pre-treatment by i.p. administration of 5 mg naringin/kg body weight for 3 consecutive days prior to doxorubicin (the most common used anticancer drug which induces MDR) administration was able to significantly lower the P-gp expression reaching nearly the level of animals treated with verapamil. Moreover, pre-treatment with naringin prior to doxorubicin increased the sensitivity to the drug. Naringin inhibited the doxorubicin-stimulated ATPase activity demonstrating that naringin may interact directly with the transporter. In addition, the results demonstrated that induction of both glutathione (GSH) and glutathione-S-transferase (GST) by doxorubicin is consistent with an increased ATP-dependent doxorubicin transport. Thus, naringin seems to modulate the in vivo expression of P-gp. In summary, the present study describes the dual modulation of P-gp expression and function by the flavonoid naringin, which may be an attractive new agent for the chemosensitization of cancer cells.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3