Comparison of Optimization-Modelling Methods for Metabolites Production in Escherichia coli

Author:

Lee Mee K.1,Mohamad Mohd Saberi23,Choon Yee Wen1,Mohd Daud Kauthar1,Nasarudin Nurul Athirah1,Ismail Mohd Arfian4,Ibrahim Zuwairie5,Napis Suhaimi6,Sinnott Richard O.7

Affiliation:

1. Artificial Intelligence and Bioinformatics Research Group, School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia , 81310 Skudai Johor , Malaysia

2. Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan , City Campus, Pengkalan Chepa , 16100 Kota Bharu Kelantan , Malaysia

3. Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan , Jeli Campus, Lock Bag 100 , 17600 Jeli Kelantan , Malaysia

4. Soft Computing and Intelligent System Research Group, Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang , 26300 Kuantan, Pahang , Malaysia

5. Faculty of Manufacturing Engineering, Universiti Malaysia Pahang , Pekan, Pahang , Malaysia

6. Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia , 43400 UPM Serdang , Selangor , Malaysia

7. School of Computing and Information Systems, The University of Melbourne , Melbourne , VIC 3052 Australia

Abstract

Abstract The metabolic network is the reconstruction of the metabolic pathway of an organism that is used to represent the interaction between enzymes and metabolites in genome level. Meanwhile, metabolic engineering is a process that modifies the metabolic network of a cell to increase the production of metabolites. However, the metabolic networks are too complex that cause problem in identifying near-optimal knockout genes/reactions for maximizing the metabolite’s production. Therefore, through constraint-based modelling, various metaheuristic algorithms have been improvised to optimize the desired phenotypes. In this paper, PSOMOMA was compared with CSMOMA and ABCMOMA for maximizing the production of succinic acid in E. coli. Furthermore, the results obtained from PSOMOMA were validated with results from the wet lab experiment.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3