Impact of fractional order methods on optimized tilt control for rail vehicles

Author:

Hassan Fazilah1,Zolotas Argyrios1

Affiliation:

1. School of Engineering , College of Science University of Lincoln , Lincoln , LN6 7TS , UK

Abstract

Abstract Advances in the use of fractional order calculus in control theory increasingly make their way into control applications such as in the process industry, electrical machines, mechatronics/robotics, albeit at a slower rate into control applications in automotive and railway systems. We present work on advances in high-speed rail vehicle tilt control design enabled by use of fractional order methods. Analytical problems in rail tilt control still exist especially on simplified tilt using non-precedent sensor information (rather than use of the more complex precedence (or preview) schemes). Challenges arise due to suspension dynamic interactions (due to strong coupling between roll and lateral dynamic modes) and the sensor measurement. We explore optimized PID-based non-precedent tilt control via both direct fractional-order PID design and via fractional-order based loop shaping that reduces effect of lags in the design model. The impact of fractional order design methods on tilt performance (track curve following vs ride quality) trade off is particularly emphasized. Simulation results illustrate superior benefit by utilizing fractional order-based tilt control design.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3