Oxidative desulfurization of model and real fuel samples with natural zeolite-based catalysts: experimental design and optimization by Box–Behnken method

Author:

Arzanypour Pardis1,Moradi Gholamreza1ORCID,Reshadi Pourya1

Affiliation:

1. Catalyst Research Center, Department of Chemical Engineering , Razi University , Kermanshah , Iran

Abstract

Abstract In this study, oxidative desulfurization was performed on simulated oil fraction consist of 1000 ppm dibenzothiophene. Cobalt supported on natural zeolite of Kaolin has been used as heterogeneous catalysts. 10% Co/metaKaolin with hydrogen peroxide as oxidant and acetonitrile as extraction solvent have shown excellent performance on desulfurization. Response surface methodology in experimental design and its subset Box–Benken was used to evaluate the performance of the selected catalyst in different operating conditions such as temperature, oxidant to sulfur molar ratio, time and catalyst amount. Also, optimum conditions was obtained are equal to 60 °C, O/S molar ratio (10.8 mol/mol), time (46 min) and catalyst amount 0.04 g with 97.1% sulfur removal. Oxidative desulfurization of model oil containing 1000 ppm of each sulfur component benzothiophene and thiophene was also tested at the optimum conditions, Oxidative desulfurization yield was ordered as DBT > BT > Th. In addition, after four steps consecutive recycle under optimum conditions oxidative desulfurization capacity of 10% Co/metaKaolin catalyst decreased from 97% to 92%, which is still high desulfurization capability. Finally, the performance of 10% Co/metaKaolin catalyst in oxidative desulfurization was evaluated for real oil fractions, gasoline and gasoil that was provided from regional oil refinery with sulfur content of 286 ppm and 7900 ppm, respectively. At the optimum conditions of operating variables desulfurization yield was 58% and 79% of total sulfur removal for gasoline and gasoil respectively with no significant changes in fuels properties.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3