The photocatalytic degradation kinetics of the anti-inflammatory drug ibuprofen in aqueous solution under UV/TiO2 system and neural networks modeling

Author:

Bennemla M.1,Bouafia-Chergui S.1,Amrane A.23,Chabani M.1

Affiliation:

1. Laboratoire Génie de la réaction, Equipe Procédés durables de dépollution, Faculté de Génie des Procédés et Génie Mécanique , U.S.T.H.B. BP 32 , El Allia , Babezzouar , Algeria

2. Ecole Nationale Supérieure de Chimie de Rennes, CNRS , UMR 6226 , 11 allée de Beaulieu , CS 50837 , 35708 , Rennes , France

3. Université Européenne de Bretagne , 5 boulevard Laënnec , 35000 , Rennes , France

Abstract

Abstract In this study, the kinetic degradation of the anti-inflammatory drug Ibuprofen in aqueous solution by heterogeneous TiO2 photocatalytic was investigated. The data obtained were used for training an artificial neural network. Preliminary experiments of photolysis and adsorption were carried out to assess their contribution to the photocatalytic degradation. Both, direct photolysis and adsorption of Ibuprofen are very low-efficient processes (15,83% and 23,88%, respectively). The degradation efficiency was significantly elevated with the addition of TiO2 Catalyst (>94%). The photocatalytic degradation followed a pseudo-first-order reaction according to the L-H model. The hydroxyl radicals and photo-hole (h+‏) were found to contribute to the Ibuprofen removal. The higher the initial concentration of Ibuprofen resulted in the lower percentage of degradation. This can be credited to the fact that the created photon and radicals were constant. The higher the initial concentration of Ibuprofen the fewer radicals were shared for each Ibuprofen molecular and so the lower percentage of degradation. The maximum photoactivity from the available light is accomplished when the concentration of catalyst reaches to 1 g/L (0.8 g), which was adopted as the optimal amounts. Compared to the removal of ibuprofen, the mineralization was relatively lower. This decrease is due to the organic content of the treated solution, which is mainly composed of recalcitrant intermediate products. The network was planned as a Levenberg-Marquardt algorithm with three layer, four neurons in the input layer, fourteen neurons in the hidden layer and one neuron in the output layer (4:14:1). The artificial neural network was trained until the MSE value between the simulated data and the experimental results was 10−5. The best results (R 2 = 0.999 and MSE = 1.5 × 10−4) were obtained with a log sigmoid transfer function at hidden layer and a linear transfer function at output layer.

Funder

the Directorate General for Scientific Research and Technological Development "DGRSDT"

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3