An Improved Analytical Solution of Population Balance Equation Involving Aggregation and Breakage via Fibonacci and Lucas Approximation Method

Author:

Pınar Zehra,Dutta Abhishek,Kassemi Mohammed,Öziş Turgut

Abstract

AbstractThis study presents a novel analytical solution for the Population Balance Equation (PBE) involving particulate aggregation and breakage by making use of the appropriate solution(s) of the associated complementary equation of a nonlinear PBE via Fibonacci and Lucas Approximation Method (FLAM). In a previously related study, travelling wave solutions of the complementary equation of the PBE using Auxiliary Equation Method (AEM) with sixth order nonlinearity was taken to be analogous to the description of the dynamic behavior of the particulate processes. However, in this study, the class of auxiliary equations is extended to Fibonacci and Lucas type equations with given transformations to solve the PBE. As a proof-of-concept for the novel approach, the general case when the number of particles varies with respect to time is chosen. Three cases i. e. balanced aggregation and breakage and when either aggregation or breakage can dominate are selected and solved for their corresponding analytical solution and compared with the available analytical approaches. The solution obtained using FLAM is found to be closer to the exact solution and requiring lesser parameters compared to the AEM and thereby being a more robust and reliable framework.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Reference74 articles.

1. Observations on the Class of “Balancing Principle” for Nonlinear PDEs that Can Be Treated by the Auxiliary Equation Method, Nonlinear Analysis;Real World Applications,2015b

2. Simulation of multicomponent aerosol dynamics;Journal of Colloid and Interface Science,1980

3. Viscous Drop Breakage in Liquid–Liquid Stirred Dispersions: Population Balance Modeling;Journal of Dispersion Science and Technology,2015

4. Simulation of multicomponent aerosol dynamics;Journal of Colloid and Interface Science,1980

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation of the crystallization processes by population balance model using a linear separation method;International Journal of Nonlinear Sciences and Numerical Simulation;2022-05-17

2. Population balances in partitioning bioreactors: Cell heterogeneity;Advances and Applications of Partitioning Bioreactors;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3