Application of response surface methodology for optimization of electrochemical process in metronidazole (MNZ) removal from aqueous solutions using stainless steel 316 (SS316) and lead (Pb) anodes

Author:

Moteshaker Parisa Mahmoudpoor1,Rokni Seyed Ehsan1,Farnoodian Narges2,Mohassel Akhlaghi Nasrin3,Saadi Sommayeh4,Ahmadidoust Ghobad5,Yousefi Arman6

Affiliation:

1. Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran

2. Department of Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran, Iran

3. Department of Environment, University of Tehran, Tehran, Iran

4. Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

5. Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran

6. Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University Bonab, Bonab, Iran

Abstract

AbstractPharmaceutical compounds in drinking water sources, in addition to threatening environmental health, increase bacterial resistance in aquatic environments. The purpose of this study was to investigate the application of response surface methodology for the optimization of the electrochemical process in the removal of metronidazole (MNZ) aqueous solutions using stainless steel 316 (SS316) and Lead (Pb) anodes. In this experimental study, the effect of different parameters including pH (4–10), electrolysis time (40–120 min), MNZ antibiotic concentration (30–150 mg/L), and current density (2–10 mA/cm2) on Antibiotic removal efficiency was evaluated by a central composite design method using Design-Expert software. Data were analyzed using ANOVA and p-Value tests. Hence, central composite design (CCD) established a reduced quadratic polynomial model with P-value < 0.0001 and R2 = 0.98. The optimal values for the solution pH initial, electrolysis time, current density, and MNZ antibiotic concentration were 5.5, 100.0 min, 8.0 mA/cm2, and 50 mg/L, respectively. By employing the optimum conditions obtained, the maximum experimental removal efficiencies by SS316 and Pb anodes were 67.85 and 78.66%, respectively. The Chemical Oxygen Demand/total organic carbon (COD/TOC) ratio was decreased from 1.67 at the inlet to 1.53 at the outlet for SS316 and from 1.7 to 1.42 for Pb. Moreover, average oxidation state (AOS) was increased from 1.45 to 1.7 for SS316 and from 1.45 to 1.86 for Pb, which indicates the biodegradability of MNZ antibiotics by the electrochemical process. The electrochemical degradation process was identified as an effective method for the removal of MNZ from aquatic solutions, and it has an outstanding potential in removing other refractory pollutants from the environment.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Reference90 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3