Non-isothermal thermogravimetric analysis of heavy oil in an O2/CO2 atmosphere

Author:

Wang Zhiqiang,Liu Ming,Cheng Xingxing,He Yusheng,Hu Yingjie,Ma Chunyuan

Abstract

Abstract Although heavy oil is an abundant and promising energy source, its processing and utilization are complicated due to its high density, low hydrogen/carbon ratio, and high asphaltene content. Fortunately, these problems can be mitigated by the application of oxy-fuel combustion. To gain deeper insights into the above technology, the characteristics of heavy oil combustion in an O2/CO2 atmosphere was investigated using non-isothermal thermogravimetric analysis. We demonstrate that the combustion process consisted of four stages. Low-molecular-weight hydrocarbons reacted at low temperature, whereas heavy ones required a higher temperature. Increasing the concentration of oxygen resulted in increased TGA and DSC peak intensities and decreased peak widths, and these peaks were shifted to lower temperatures. Coat-Redfern and Flynn-Wall-Ozzawa methods were used to evaluate the kinetic parameters (E, A) of the oxidation process, showing that the high-temperature activation energy was much higher than the low-temperature one due to the different molecular weights of the oxidized substrates in each region. The reaction was demonstrated to be diffusion-controlled, as reflected by the lower activation energy at high oxygen concentration and high temperature, with the influence of oxygen concentration on QO processes being much more obvious than that on SO ones.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3