Bayesian Deconvolution of Vessel Residence Time Distribution

Author:

Huddle Thomas,Langston Paul,Lester Edward

Abstract

Abstract Residence time distribution (RTD) within vessels is a critical aspect for the design and operation of continuous flow technologies, such as hydrothermal synthesis of nanomaterials. RTD affects product characteristics, such as particle size distribution. Tracer techniques allow measurement of RTD, but often cannot be used on an individual vessel in multiple vessel systems due to unsuitable exit flow conditions. However, RTD can be measured indirectly by removal of this vessel from the system and deconvoluting the resulting detected tracer profile from the original trace of the entire system. This paper presents three models for deconvolution of RTD: BAY an application of the Lucy-Richardson iterative algorithm using Bayes’ Theorem, LSQ an adaptation of a least squares error approach and FFT a Fast Fourier Transform. These techniques do not require any assumption about the form of the RTD. The three models are all accurate in theoretical tests with no simulated measurement error. For scenarios with simulated measurement error in the convoluted distribution, the FFT and BAY models are both very accurate. The LSQ model is the least suitable and the output is very noisy; smoothing functions can produce smooth curves, but the resulting RTD is less accurate than the other models. In experimental tests the BAY and FFT models produce near identical results which are very accurate. Both models run quickly, but in real time control the runtime for BAY would have to be considered further. BAY does not require any filtering or smoothing here, and so potentially there are applications where it might be more useful than FFT.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3