Parametric Mathematical Modelling of Cristal Violet Dye Electrochemical Oxidation Using a Flow Electrochemical Reactor with BDD and DSA Anodes in Sulfate Media

Author:

Rivera Fernando F.,Rodríguez Francisca A.,Rivero Eligio P.,Cruz-Díaz Martín R.

Abstract

Abstract An important issue in electrochemical oxidations of pollutant compounds, like organic dyes, is identifying a suitable correlation between operational conditions and electrochemical process performance. In such sense, this work deals with the parametric modelling of direct electrochemical incineration of crystal violet (CV) dye in a FM01-LC flow electrochemical reactor with a plastic spacer configuration using boron doped diamond (BDD) and dimensionally stable (IrO2 and IrO2-SnO2-Sb2O5) anode plates. Mathematical model takes into account the fluid dynamics effects by the use of FM01-LC reactor considering mass transport rate of organic compound (R) from bulk solution to electrode surface, characterized by a dispersion coefficient and Pe number. The effect of strong oxidants produced in the electrode surface can be neglected since the characteristic time constant reaction of pollutants with such oxidants is lower than those describing the diffusion of organic compound to the electrode surface. Model parameters were estimated throughout a fitting method of the experimental data. The model proposed here predicted a 99.7 removal percentage of CV with boron doped diamond and IrO2-SnO2-Sb2O5 anodes obtained experimentally, meanwhile a 79 % removal with the IrO2 anode was reached at Re = 2204 during an electrolysis time of 7200 s for both cases. In the case of IrO2 anodes, complex interactions between hydroxyl-radical and electrode surface provokes an intermediate kinetic process, with an effectiveness factor of 0.59. When BDD and IrO2-SnO2-Sb2O5 anodes were used, the removal process mediated by hydroxyl-radicals absorbed in electrode surface was fully limited by mass transport.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3