CFD-DEM simulation of powders clogging in a packed bed with lateral inlet

Author:

Liu Yingchao1,Wang Jingbin2,Liu Yanjun2,Li Lihong2,Zhou Heng1,She Xuefeng1

Affiliation:

1. State Key Laboratory of Advanced Metallurgy , University of Science and Technology Beijing , Beijing 100083 , China

2. Delong Iron and Steel Co., Ltd. , Xingtai , HeBei 054009 , China

Abstract

Abstract Clogging behavior of powder particles in packed bed is a longstanding engineering challenge in many industrial processes, of particular interests to ironmaking reactors. In this work, a CFD-DEM model was developed to investigate the powders clogging in a packed bed with lateral inlet. The flow and clogging of powders of varying gas velocities flowing through the packed bed were studied. The results showed that two kinds of clogging powders inside the porous can be observed. One is mainly due to mechanical interactions between powder particles, which can create arches on packed bed and stop the flow. When the powders form a bridge across the pore throat of the orifice, the bottleneck of void space becomes the starting point for blockage formation. The other represents a part of clogging powders which is due to drag force and friction between one small particle rolling very slowly on the surface of large particles whose spacing is close to the diameter of powders. The powders distribution, mechanical behavior and pressure drop were also discussed. The findings of this work provides a fundamental understanding on clogging behavior of powders in a packed bed with lateral inlet, and is useful for industry processes’ understanding and optimization.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3