Numerical investigations on sc-CO2 gas sequestration in layered heterogeneous deep saline aquifers

Author:

Pavan Tummuri Naga Venkata1ORCID,Devarapu Srinivasa Reddy2ORCID,Kudapa Vamsi Krishna2ORCID,Govindarajan Suresh Kumar1ORCID

Affiliation:

1. Reservoir Simulation Laboratory, Petroleum Engineering Programme, Department of Ocean Engineering , Indian Institute of Technology – Madras , Chennai , India

2. Department of Petroleum Engineering and Earth Sciences , School of Engineering, University of Petroleum & Energy Studies , Dehradun , India

Abstract

Abstract Carbon capture and storage (CCS) technology is regarded as the feasible solution to mitigate CO2 emissions from the burning of fossil fuels in large-scale industries to meet energy demand. The storage of CCS requires the injection of CO2 gas captured from bulk sources into geological formations. Deep saline aquifers are the largest identified storage potential formations for injecting high volumes of gas. The safe storage of CO2 gas requires a better understanding of the gas migration and pore pressure buildup in the aquifer. In the present work, a numerical has been developed to study the various factors impacting the CO2 gas migration in the formation of both homogeneous and multi-layered deep saline aquifers. The numerical model has been history matched with an analytical solution and the plume thickness data reported by Nordbotten, J. M., M. A. Celia, and S. Bachu. (2005). “Injection and Storage of CO2 in Deep Saline Aquifers: Analytical Solution for CO2 Plume Evolution during Injection.” Transport in Porous Media 58 (3): 339–60. The saturation distribution and pressure buildup in the aquifer are different for each case. The relative permeability of gas increases in the homogeneous case. The drainage efficiency increases along with injection time in any formation. However, the drainage process is less in layered formation compared with homogeneous formation. The parameterized storage efficiency factor (Ɛ) is calculated to understand the storage capacity of the aquifer along the lateral direction near to injection well. The formations having low permeability in the top and below layers of the aquifer, the storage efficiency factor is high indicating more amount of gas is stored.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3