A study on the adsorption property and mechanism of β-cyclodextrin/polyvinyl alcohol/polyacrylic acid hydrogel for ciprofloxacin

Author:

Tian Jintao1,Zhang Hongyu1,Zhao Xinyu1,Liu Wanyi1,Fakhri Yasser2

Affiliation:

1. College of resources and environment , Jilin Agricultural University , Changchun 130000 , China

2. Department of Pharmaceutical Chemistry, University of Isfahan , Isfahan , Iran

Abstract

Abstract Polyvinyl alcohol (PVA), acrylic acid (AA), and β-cyclodextrin (β-CD) were used as monomers, and ammonium persulfate was used as an initiator. Orthogonal tests were optimized the experimental condition, and aqueous polymerization was used to prepare poly-β-cyclodextrin/polyvinyl alcohol/polyacrylic acid (β-CD/PVA/PAA) hydrogel. The samples were characterized by FT-IR (Fourier transform infrared), SEM (Scanning electron microscopy), and XRD (X-ray diffraction). β-CD/PVA/PAA hydrogel was analyzed, which influenced external environmental factors on the β-CD/PVA/PAA hydrogel adsorption performance, and the kinetic behavior of β-CD/PVA/PAA hydrogel on ciprofloxacin (CIP) adsorption was explored. The results concluded that the prepared β-CD/PVA/PAA hydrogel has a well-defined three-dimensional network structure. The decrease in the pH of the CIP solution and the adsorption temperature reduces the adsorption reaction of β-CD/PVA/PAA hydrogel on CIP. The kinetics of CIP adsorption by β-CD/PVA/PAA hydrogel confirmed the pseudo-second-order kinetic model (R 2 > 0.997), the maximum equilibrium adsorption amounts is 372.12 mg/g, the removal rate reaches 74.42%. The adsorption process was mainly chemisorption, the adsorption isotherm fits the Freundlich adsorption isotherm model (R 2 > 0.946), and the adsorption process was heterogeneous with multi-molecular layer adsorption. The adsorption process inclined more toward the adsorption of inhomogeneous multi-molecular layers. The β-CD/PVA/PAA hydrogel retained 80% adsorption properties after three adsorption-desorption under optimal conditions.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3