Modelling and multi-objective optimization for simulation of hydrogen production using a photosynthetic consortium

Author:

Hernández-Melchor Dulce J.1,Camacho-Pérez Beni2,Ríos-Leal Elvira3,Alarcón-Bonilla Jesus2,López-Pérez Pablo A.4

Affiliation:

1. Colegio de Postgraduados campus Montecillo, Carretera México-Texcoco Km. 36.5, Montecillo, Texcoco, 56230, Estado de México, México

2. Universidad Tecnológica de Tecámac, A5 Químico-Biológicas, Carretera Federal México – Pachuca Km 37.5, C.P. 55740, Col. Sierra Hermosa, Tecámac, Estado de México, México

3. Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, No. 2508, San Pedro Zacatenco, Ciudad de Mexico, D.F., México

4. Universidad Autónoma del Estado de Hidalgo, Escuela Superior Apan, Carretera Apan-Calpulalpan Km.8, Col. Chimalpa, 43920, Apan, Hgo, México

Abstract

AbstractThis study was aimed at finding the optimal conditions for hydrogen production based on statistical experiments and using a simulation approach. A Plackett–Burman design and steepest ascent were used to screen the key factors to obtain the best hydrogen concentration. According to the regression analysis, cysteine, acetate, and aeration had the best effect. The optimal conditions, using the method of steepest ascent, were aeration (0.125 L/min), acetate (200 mg/L), cysteine (498 mg/L). Once this was determined, an experiment with more than two factors was considered. The combinations: acetate + cysteine without aeration and cysteine without aeration increased hydrogen concentration. These last two criteria were used to validate the dynamic model based on unstructured kinetics. Biomass, nitrogen, acetate, and hydrogen concentrations were monitored. The proposed model was used to perform the multi-objective optimization for various desired combinations. The simultaneous optimization for a minimum ratio of cysteine-acetate improved the concentration of hydrogen to 20 mg/L. Biomass optimized the concentration of hydrogen to 11.5 mg/L. The simultaneous optimization of reaction time (RT) and cysteine improved hydrogen concentration to 28.19 mg/L. The experimental hydrogen production was 11.4 mg/L at 24 h under discontinuous operation. Finally, the proposed model and the optimization methodology calculated a higher hydrogen concentration than the experimental data.

Funder

Red Temática de Bioenergía del CONACYT, Universidad Tecnológica de Tecámac

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Reference132 articles.

1. Maximum Hydrogen Production Rate Optimization for Tubular Steam Methane Reforming Reactor;International Journal of Chemical Reactor Engineering,2019

2. Fractal Analysis of pH Time-Series of an Anaerobic Digester for Cheese Whey Treatment;International Journal of Chemical Reactor Engineering,2018

3. Microalgal Hydrogen Production – A Review;Bioresource Technology,2017

4. Experimental and Kinetic Study for Lead Removal via Photosynthetic Consortia Using Genetic Algorithms to Parameter Estimation;Environmental Science and Pollution Research,2018

5. Sustained Photobiological Hydrogen Gas Production upon Reversible Inactivation of Oxygen Evolution in the Green Alga Chlamydomonas reinhardtii;Plant Physiology,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3