Exploring the performance of Co/Al2O3–ZrO2 nanocatalysts developed through the thermal evaporation method in dry reforming of methane

Author:

Moradi Mohamad Jafar1,Moradi Gholamreza1ORCID

Affiliation:

1. Catalyst Research Center, Faculty of Chemical Engineering and Petroleum , 48494 Razi University , Kermanshah , Iran

Abstract

Abstract This study aimed to investigate the performance of the thin layer nanostructures of Co/Al2O3–ZrO2 in the dry reforming of methane (DRM) in a microchannel reactor. The nanostructures were prepared via utilizing the thermal evaporation method. Reactor tests were carried out at various coating times of 2, 3, and 4 min and temperatures of 700, 750, and 800 °C with a feed flow rate of 10 ml/min and a 1:1:8 ratio of helium, carbon dioxide, and methane. Also, grazing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray (EDX) were used to identify catalyst features. According to the obtained results, the highest percentage of conversion in all samples was observed at 800 °C. The results of the reactor tests also revealed that the activity of catalyst layers highly depends on coating time. The findings demonstrated that raising deposition time improves the distribution of particle size and catalyst loading. Considering the nanostructure of Co/Al2O3–ZrO2, the sample undergoing 4 min coating time yielded the highest amount of primary methane conversion (89.3 %), primary carbon dioxide conversion (92.4 %), and H2/CO molar ratio (0.91). The stability test of the catalyst layers for 28 h at the optimum condition (P = 1 atm, T = 800 °C, t = 4 min deposition time, CH4/CO2 = 1, and GHSV = 48,000 mL g−1 h−1) showed that the catalysts prepared by this method had a good stability.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3