Experimental study on coal-fired flue gas HCl removal by injecting adsorbent into flue duct

Author:

Shen Zhen1,Shen Ao2ORCID,Yue Pujie3,Liu Xiaoshuo2,Ning Xiang3,Li Haiyang2,Meng Lei3,Gu Xiaobing3,Duan Yufeng2

Affiliation:

1. Department of Energy and Power Engineering , Tsinghua University , Beijing 100084 , China

2. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment , Southeast University , Nanjing , 210096 , China

3. Datang Environmental Industry Group Co., Ltd. , Beijing 100097 , China

Abstract

Abstract Adsorbent injection into flue ducts is an effective technology for controlling gaseous pollutant in coal-fired power plants. This study proposed a new technique of injecting dechlorinater into flue duct for HCl removal in order to realize the wet flue gas desulfurization (WFGD) wastewater sequestration and upgrade the gypsum quality, known as the source dechlorination method. Four alkaline-based adsorbents of CaO, Ca(OH)2 + 5 % NaOH, ethanol-modified CaO, and NaHCO3 were developed and investigated in a pilot scale 6 kW coal-fired circulating fluidized bed (CFB) combustion system for capturing flue gas HCl. The physical and chemical properties of the adsorbents were characterized to explore the reaction mechanisms affected by the adsorbent size and its distribution, active component loading, micro-structure, morphology, and crystal structure. The influences of the injection amount, resident time and flue gas temperature on the HCl removal efficiency were carried out, the dechlorination mechanism of the ethanol-modified CaO were discussed. The distribution of flue gas chlorine species across the air pollutant control devices (APCD) were obtained. This study provides basis for developing the technology of injecting dechlorinater into flue gas for HCl removal.

Funder

Datang Environmental Industry Group Co., Ltd

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3