Author:
Prasannakumara B.C.,Reddy M. Gnaneswara,Sudha Rani M.V.V.N.L.,Krishnamurthy M.R.
Abstract
Abstract
The main focus of the present study is to analyze the effect of chemical reaction and nonlinear thermal radiation on Maxwell fluid suspended with nanoparticles through a porous medium along horizontal stretching sheet. The governing partial differential equations of the defined problem are reduced into a set of nonlinear ordinary differential equations using adequate similarity transformations. Obtained set of similarity equations are then solved with the help of efficient numerical method fourth fifth order Runge-Kutta-Fehlberg method. The effects of different flow pertinent parameters on the flow fields like velocity, temperature, and concentration are shown in the form of graphs and tables. The detailed analysis of the problem is carried out based on the plotted graphs and tables. It is observed that an increase in the radiation parameter, temperature ratio parameter, Brownian motion parameter and thermophoretic parameter lead to increase in the thermal boundary layer thickness but quite opposite phenomenon can be seen for the effect of Prandtl number.
Subject
General Chemical Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献