Abstract
Abstract
In this paper, a Haar wavelets based numerical method to solve a system of linear or nonlinear fractional differential equations has been proposed. Numerous nontrivial test examples along with practical problems from fluid dynamics and chemical engineering have been considered to illustrate applicability of the proposed method. We have derived a theoretical error bound which plays a crucial role whenever the exact solution of the system is not known and also it guarantees the convergence of approximate solution to exact solution.
Subject
General Chemical Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献