Micro-emulsion synthesis of La1 − xCrxFeO3 nanoparticles: effect of Cr doping on ferroelectric, dielectric and photocatalytic properties

Author:

Abbas Sehrish1,Bibi Ismat1,Majid Farzana2,Ata Sadia3,Ibrahim Sobhy M.4,Kamal Shagufta5,Sultan Misbah3,Jilani Kashif6,Iqbal Shahid1,Iqbal Munawar7

Affiliation:

1. Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan

2. Department of Physics, University of the Punjab, Lahore, Pakistan

3. Institute of Chemistry, University of the Punjab, Lahore, Pakistan

4. Department of Biochemistry, College of Science, King Saud University, P.O. Box: 2455, Riyadh11451, Saudi Arabia

5. Department of Applied Chemistry and Biochemistry, Government College University, Faisalabad, Pakistan

6. Deprtment of Biochemistry, University of Agriculture, Faisalabad, Pakistan

7. Department of Chemistry, The University of Lahore, Lahore, Pakistan

Abstract

AbstractIn the present study, La1 − xCrxFeO3 (x = 0.0, 0.3, 0.6, 0.9, 1.0) was synthesized by micro-emulsion route and characterized by X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), Scanning electron microscope (SEM), Energy-dispersive X-ray (EDX) techniques. The dielectric, ferroelectric and photocatalytic properties were investigated and compared with un-doped material. The XRD analysis revealed orthorhombic geometry of La1 − xCrxFeO3 (x = 0.0, 0.3, 0.6, 0.9, 1.0), Cr was doped successfully into the lattice structure of LaFeO3 and particles were spherical and in agglomerated form. The grain sizes were recorded to be 15, 16.9, 17.1, 17.65 and 18.3 (nm) for La1 − xCrxFeO3 (x = 0.0, 0.3, 0.6, 0.9, 1.0), respectively. EDX analysis confirmed the purity of LaCrFeO3 samples. The lattice parameters, bulk density, X-ray density, crystalline size and porosity were determined were also determined of all the La1 − xCrxFeO3 samples. The dielectric constant and dielectric loss values decreased at higher frequency and Cr concentration affected the dielectric properties. The photocatalytic activity (PCA) was evaluated by degrading Congo Red (CR) dye under solar light irradiation and up to 85.43% dye degradation was achieved within 45 min of irradiation. Phyto-toxicity analysis before and after dye degradation was performed, which revealed the toxicity reduction in response of dye degradation. Results revealed that lanthanum ferrite (perovskite) doping with Cr could possibly be employed to enhance the ferroelectric, dielectric and photocatalytic properties.

Funder

King Saud University

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3