Affiliation:
1. Faculty of Chemical Engineering and Technology , University of Zagreb , Marulićev trg 19, 10000 Zagreb , Croatia
2. Faculty of Metallurgy , University of Zagreb , Aleja narodnih heroja 3, 44103 Sisak , Croatia
Abstract
Abstract
The aim of this work was to evaluate the photocatalytic activity of two distinct anatase thin films. Films were prepared following the sol-gel procedure from titanium (IV) isopropoxide (TF-1) and from commercial TiO2 P25 as a starting material (TF-2). The films were compared based on the salicylic acid (2-dihydroxybenzoic acid, 2-HBA) photocatalytic degradation in reactors of different geometry and under different irradiation conditions. Experiments were performed in (i) an annular photoreactors operated under turbulent flow (TAR1 and TAR2) and (ii) semi-annular reactor operated under laminar flow (LFR). The TF-1 and TF-2 were immobilized on the inner side of outer wall of TAR1 and TAR2 and on the bottom of LFR. Experimental study included sorption study and four consecutive photocatalytic runs (tirr= 8 h) using TF-1 and TF-2 in each reactor. Obtained results confirmed the stability and the similar photocatalytic activity of the both films. The 2,5-dihydroxybenzoic acid (2,5-DHBA) and 2,3-dihydroxybenzoic acid (2,3-DHBA) were identified as main 2-HBA degradation by-products. Kinetic models were developed accordingly. Incident photon flux was determined along the inner reactor wall in annular reactors and on the bottom of LFR, i. e. on the thin film surface (I
tf, W m−2) using ESSDE radiation emission model. The irradiation factor, i. e. the product of absorption coefficient and incident photon flux at film surface (μI
tf(z))m was introduced into the kinetic models. Resulting reaction rate constants k
i (min−1W−0.5 m1.5) were independent of reactor geometry, hydrodynamics, irradiation condition and the optical properties of thin films. Efficiencies of TF-1 and TF-2 in studied reactors were given on the basis of quantum yields (QY) for 2-HBA oxidation and overall mineralization toward CO2.
Subject
General Chemical Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献