Design and parametric optimization of a fan-notched baffle structure mixer for enhancement of liquid-liquid two-phase chemical process

Author:

Zhao Shuangfei1,Nie Yingying1,Wei Yimin1,Yu Pengjie1,He Wei1,Zhu Ning12,Li Yuguang3,Ji Dong3,Guo Kai12

Affiliation:

1. College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China

2. State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China

3. Institute of Nanjing Advanced Biomaterials & Processing Equipment , Nanjing 211299 , China

Abstract

Abstract The mixing uniformity plays a crucial role in a liquid-liquid two-phase chemical process. To quantify the uniformity of the liquid–liquid process, the specific surface area ratio is proposed and studied through computational fluid dynamics simulation. There is a scale effect in the liquid–liquid two phase chemical processing that the specific surface area ratio decreases to 7.01% when the diameter of the Y-like mixer increases from 1 mm to 10 mm. A millimeter-scale mixer with a fan-notched baffle structure was designed, and the baffle unit length, baffle tilt angle, baffle notch size and baffle thickness of the mixer were optimized. Compared with the 1 mm Y-like mixer, the specific surface area ratio of the 10 mm mixer with notched baffle structures increases to 2.5 times and the treatment capacity increases to 100 times. Additionally, experiment and simulation results prove that FNBS is considered to be a suitable structure for enhancing liquid-liquid two-phase. This study will provide a useful reference for the design of large-scale mixers applicable to liquid-liquid heterogeneous chemical processes.

Funder

The Top-notch Academic Programs Project of Jiangsu Higher Education Institutions

The National Key R&D Program of China

Nanjing International Joint R&D Project

National Natural Science Foundation of China

Basic Research Program of Jiangsu Province (Natural Science Foundation)-Frontier Leading Technology Basic Research Project-Frontier Project

Jiangsu Province Industrial Prospects and Key Core Technologies-Competitive Projects

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3